

RICAI 2018

38ème Réunion Interdisciplinaire de Chimiothérapie Anti-Infectieuse

CO-107
Activité in vitro des lipoglycopeptides sur les entéroccoques en fonction du génotype de résistance à la vancomycine

Dr Gabriel AUGER Bactériologie CHU de Rennes CNR Résistance aux axtibiotiques Laboratoire associ@« Entérocogues »

RICAI 2018

38ème Réunion Interdisciplinaire de Chimiothérapie Anti-Infectieuse

Déclaration de liens d'intérêt avec les industries de santé en rapport avec le thème de la présentation.

Consultant ou membre d'un conseil scientifique

Conférencier ou auteur/rédacteur rémunéré d'articles ou documents

Prise en charge de frais de voyage, d'hébergement ou d'inscription à des congrès ou autres manifestations OUI

Investigateur principal o une recherche ou d'une étude clinique

مرا

NON

NON

NON

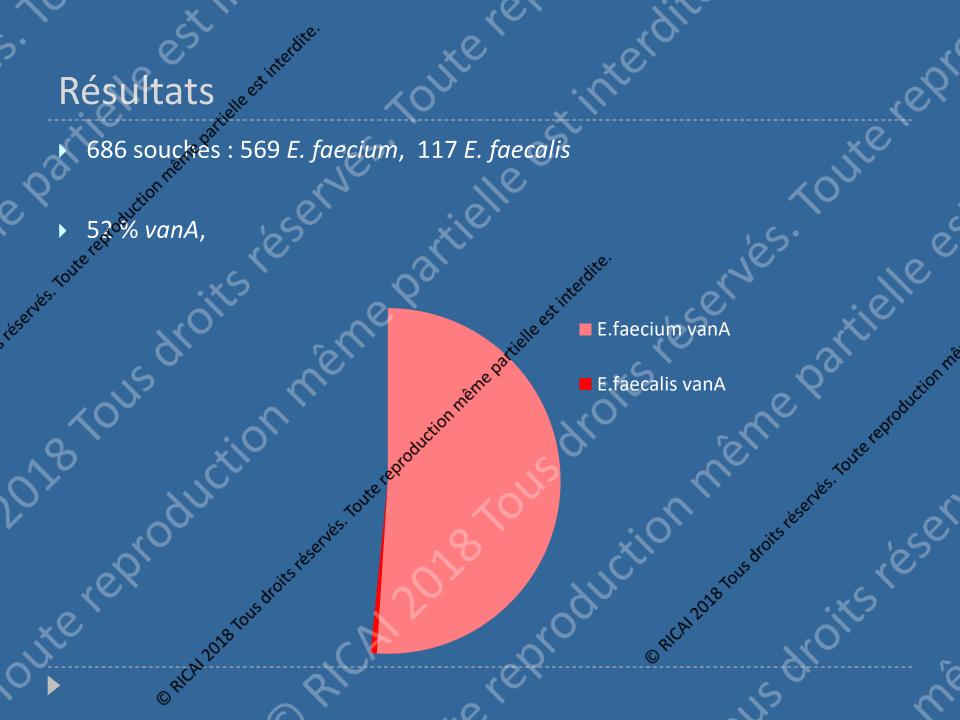
- olis reserves. Tolite re Iction memers and a series of the series of Oritavancias Toute droits lessentes.

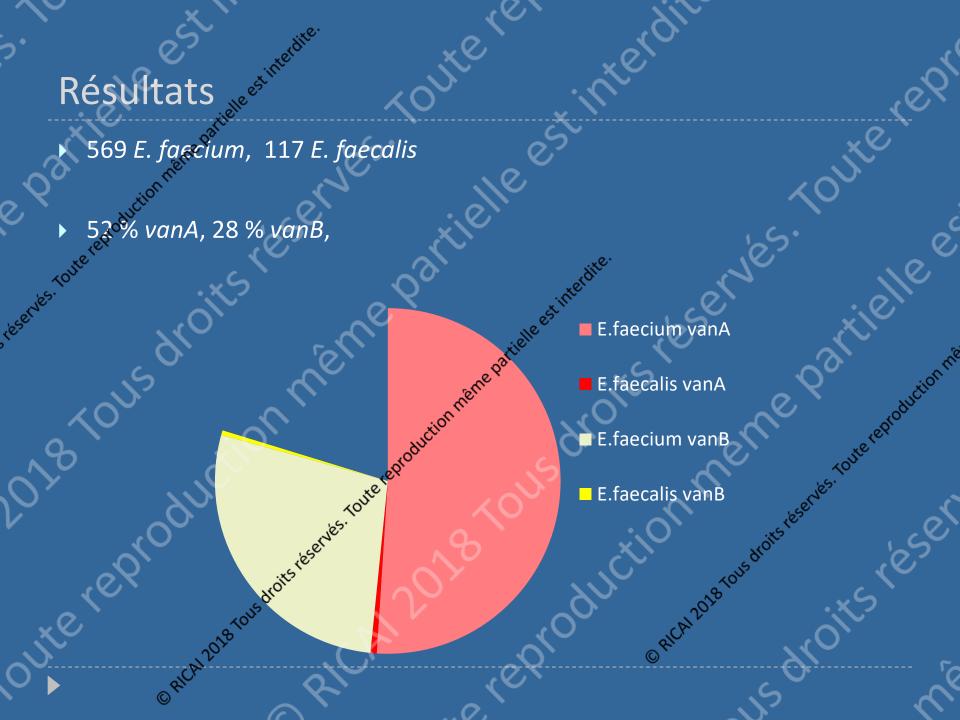
 ORBACTIV®

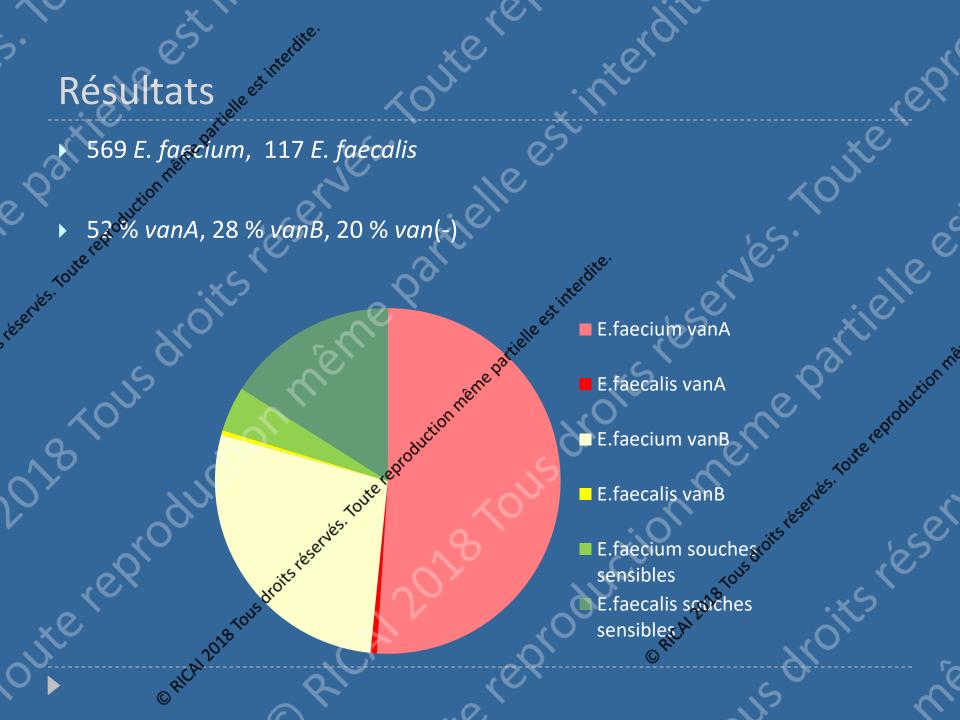
© RICAL 2018 Tous droits reserves. Truke rev Je draire when

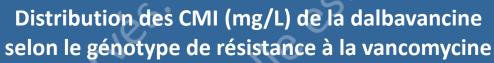
estificiality

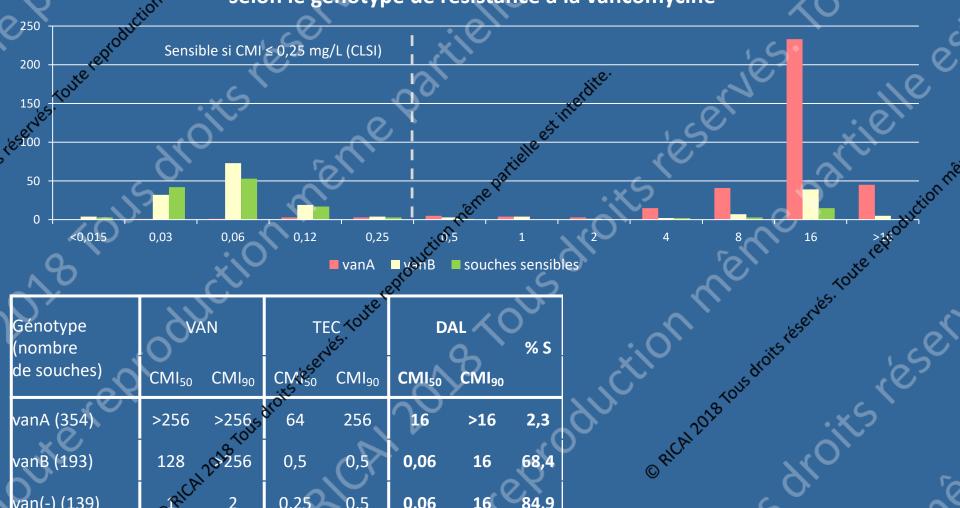
eptio.

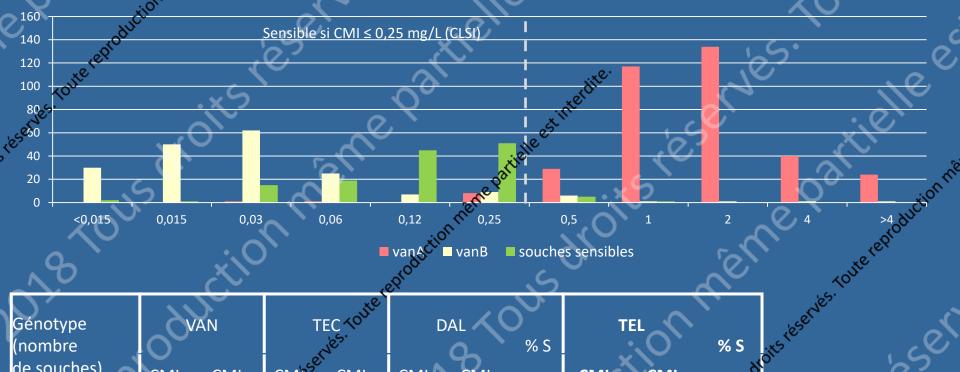





Matériels et méthodes

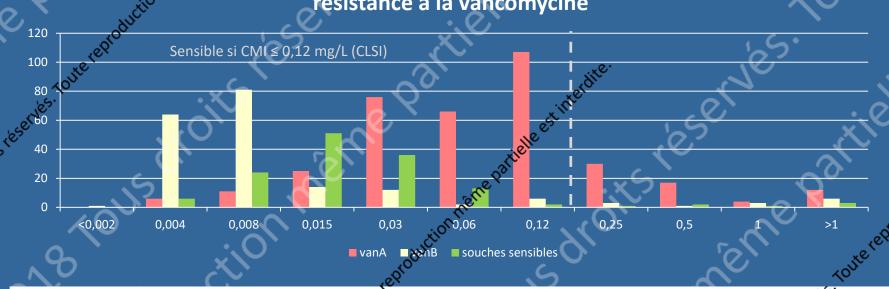

	~\~					<u> </u>						_
Ç [°]	TEI 0.03	THE SECOND	TEI 0.12	TEI 0.25	TEI 0.5	TEI 1	TEI 2/ Tei	TEI coplanine, 2	TEI 8	TEI 16	TEI 32	121 64
	TEXOOD TEXT	TEI 256	ORITAV 0.002	ORITAV 0.004	ORITAV 0.008	ORITAN 0.015	ORITAV 0.03	ORITAV 0.06	ORITAV 0.12	ORITAW 0.25	ORITAV 0.5	ORITAV 1
rieservies.	VAN 0.12	VAN 0.25	VAN 0.5	VAN 1	VAN 2	VAN 4	VAN 8	VAN 16	VAN 32	VAN 64	VAN 128	VAN 256
	DAPTON 0.03	DAPTON 0.06	DAPTON 0.12	DAPTON 0.25	DAPTON 0.5	DAPTON 1	RAPTON 2	DAPTOM 4	DAPTOM 8	DAPTOM 16	DAPTOM 32	DAPTOM 64
	LZ0 0.12	LZD 0.25	LZD 0.5	LZD 1	LZD 2	Juction 4	LZD 8	LZD 16	LZD 32	TELAVT 0.015	TELAVT 0.03	TELAVT
\(\mathcal{P}\)	TELAVIT 0.12	TELAVT 0.25	TELAVI 0.5	TELAVI 1 use	VELAVT 2	TELAVT 4	TEDIZO 0.03	TEDIZO 0.06	TEDIZO 0.12	TEDIZO 0.25	TEBEZO 5 0.5	TEDIZO 1
	TEDIZO 2	TEDIZO 4	TEDIZO 8 5015	VIGECY 0.015	TIGECY 0.03	TIGECY 0.06	TIGECY 0.12	TIGECY 0.25		TIKE TO TO THE TOTAL TOT	TIGECY 2	TIGECY 4
OU	DALBAV 0.015	DALBAV 0.03	ALBAV 0.06	DALBAV 0.12	DALBAV 0.25	DALBAV 0.5	DALEAV 1	DALBAV 2	DAGBAV 4	DALBAV 8	DALBAV 16	Pos


Keldill



Génotype (nombre de souches)	VA CMI ₅₀	AN CMI ₉₀	CM/So	CMI ₉₀	CMI ₅₀	CMI ₉₀	% S
vanA (354)	>256	>256,5	64	256	16	>16	2,3
vanB (193)	128	256	0,5	0,5	0,06	16	68,4
van(-) (139)	©RICA'	2	0,25	0,5	0,06	16(84,9

Résultats ne est inte


Distribution des CMI (mg/L) de la télavancine selon le génotype de résistance à la vancomycine

Génotype (nombre de souches)	VAN CMI ₅₀ CMI ₅	TEC COUTE O CM 50 CMI90	DAL % S CMI ₅₀ CMI ₉₀	TEL % S	,o ⁱ
vanA (354)	>256 >256	64 256	16 >16 2,3	2 4 20192,8	
vanB (193)	128 250	5 0,5 0,5	0,06 16 68,4	0,03 0,12 94,8	
van(-) (139)	©RICH 2	0,25 0,5	0,06 16 84,9	0,12 0,25 95,7	5

Résultats

ÉSUITATSPestribution des CMI de l'oritavancine selon le génotype de résistance à la vancomycine

Génotype (nombre de souches)	VAN CMI ₅₀ CMI ₉₀	TEC COUTE CM Serves	DAL CMI ₅₀ CMI ₉₀	% S	TEL CMI ₅₀ CMI ₉₀	% S % S	CMI ₅₀ CMI ₉₀	% S
vanA (354)	>256 >256	64 256	16 >16	2,3	2 4 2	2,8	0,06 0,25	82,2
vanB (193)	128 256	0,5 0,5	0,06 16	68,4	0,03 (\$12	94,8	0,008 0,06	93,3
van(-) (139)	©RICA: 2	0,25 0,5	0,06 16	84,9	0,12 0,25	95,7	0,015 0,06	95

Résultats and se extint

- La quasi-totalité des souches vanA étaient résistantes à DAL et TEL tandis que la majorité restait sensible à ORI.
- Shus de 90 % des souches *vanB* étaient sensibles à TELeet ORI contre seulement 2/3 pour DAL.
- Alors que toutes les souches van(-) étaient sensibles aux GP, 5 à 15 % d'entre elles étaient catégorisées résistantes aux lipogly copeptides.

TEC TOUTE Génotype % S (nombre CMP50 de souches) CMI₉₀ CMI₉₀ CMI₅₀ CMI₅₀ CMI₅₀ CMI₉₀ CMI₅₀ CMI₉₀ 82,2 vanA (354) >16 0,06 0,25 >256 >256 64 256 16 2,3 0,5 68,4 93,3 vanB (193) 128 0,5 0,06 16 0,03 0,008 0,06 94,8 0,25 0,06 84,9 0,25 van(-) (139) 0,12 0,06 95

Discussion est interdire Lien entre résistance aux glycopeptides et activité des lipoglycopeptides sur les entérocoques connu Dalbavancine ixsiesein

tolife les

	Discu	ssio	neest l'	
Ģ	Lien e entéro	ntre rés ocoques	sistance s connu	e aux glyc I
	Lien e entéro	.,	رج ر ^{اوا}	, ,
, lesery	Génotype (nombre de souches)	9,0	AL	%s
	vanA (354)	CMI ₅₀	CMI ₉₀ >16	2,3
0	vanB (193)	0,06	16	68,4
レ	van(-) (139)	0,06	16	84.6
3	van(-) (139) Pfaller et a	, V	18 Tous droi	isiese.
0	Pfaller et a	I. 2 01 8	a	BILL

20.	ı	Pfaller <i>et</i>	dl. 2018 c	ollection 201	5-2016		119
X	E. faed	calis, 🗥		.0)	E. faec	ium	.0
Génotype (nombre de souches)	CMI ₅₀	AL CMI ₉₀	% S	Génotype (nombre de souches)	DA CMI ₅₀	AL CMI ₉₀	% S
van.4.,43)	>2	>2	0	vanA (386)	>2	>2	2,1
vanB (6)	0,06	S NR	66,7	vanB (19)	0,06	>5. >5. √0	73,7
van(-) (2022)	0,03	0,06	100	van(-) (531)	0,06	0,12	100

Discussion est interdire Lien entre ésistance aux glycopeptides et activité des lipoglycopeptides sur les entérocoques connu x5 teseral

College

Télavancine

	Discu	ıssi	oneest	ce aux glv	
Q'	Lien e	entre e ocoqu	es conr	ce aux gl	Ϋ́
	Lien e entére	Y	برجرا	So.	
, lesel	Génotype (nombre	9/	EL	% S	
	de souches)	CMI ₅₀	CMI ₉₀		
~	vanA (354)	2	40	2,8	
$\langle O \rangle$	vanB (193)	0,03	0,12	94,8	· '
V	van(-) (139)	0,12	0,25	95,7	ĭ
×	e (eQ		a Tous d	94,8 95,7,55. goits réseans	*
	• 	<i>-</i>	2010	(ا ر
	Duncan et	t al. 2017		α	

20,		Duncaro	et al. 20:	17 collection	2014		.\6
Y	E. faeca	alis inter		.0	E. faed	cium	
Génotype (nombre	Partie	e EL	% S	Génotype (nombre	Tí		% S
de souches)	CMI ₅₀	CMI ₉₀		de souches)	CMI ₅₀	CMI ₉₀	duc
vanA (11)	2	>2	0	vanA (207)	1	2	10,1
vanB	-	<u>ک</u> ۔	-	vanB (17)	0,03	0,25	100
van(-) (711)	0,12	0,12	99,9	van(-) (289)	≤ 0,015	2 ^{0,03}	100

Oritavancine

Oritavancine interdite.								
Génotype (nombre de souches)	CMI ₅₀	CMI CMI	ر د د	% S				
vanA (354)	0,06	0,25		82,2				
vanB (193)	0,008	0,06		93,3	4	(*		
van(-) (139)	0,015	0,06		95	2			

	_,\/	<u> </u>					
	, 1	Biedenbac	h <i>et al</i> . 201	15 collection 2	011-2014		
X	E. fae	ecalis	×0		E. fae	ecium	
Génotype (nombre	(ORI	% S	Génotype (nombre		ORI	%s
de souches)	CMI ₅₀	CMI ₉₀	/0 3	de souches)	CMI ₅₀	CMI ₉₀	70.3
vanco R (41)	0,12	0,25	75,6	vanco R (210)	0,06	0,12	93,8
vanco S (982)	0,015	0,03	99,4	vanco S (177)	0,008	0,015	100
Parition	5	NS OF	X	on manager	ous droits	Q Oliver Course of the Course	elle duction de la constitución

OS (982) (0,0 RICAL 2019 Talle Archite ribecartife diedenbach et al. 27 An 8 Tous Houts tese utes. Toute reproduction même partielle est intentité.

Oritavancine

Oritava	ncine	X Y	zint erdi ^{re}	ž·
Génotype (nombre de souches)	CMI ₅₀	CM	% S	
vanA (354)		0,25	82,2	
vanB (193)	0,008	0,06	93,3	1
van(-) (139)	XX	0,06	95	
van(-) (139)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		25.4	

	Biedenbach et al. 2015 collection 2011-2014										
X	E. fae	ecalis	~0	•	E. fae	ecium					
Génotype (nombre	(ORI	% S	Génotype (nombre		ORI	% S				
de souches)	CMI ₅₀	CMI ₉₀	70 3	de souches)	CMI ₅₀	CMI ₉₀	<i>7</i> 0 3				
vanco R (41)	0,12	0,25	75,6	vanco R (210)	0,06	0,12	93,8				
vanco S (982)	0,015	0,03	99,4	vanco S (177)	0,008	0,015	100				

20.	P	faller <i>et g</i>	2018 colle	ction 2010-20	14 Europ	e	1/6	
E. faecalis				.0)	0.			
Génotype	ORL ess			Génotype		0/ 5		
(nombre de souches)	CMI	CMI ₉₀	% S	(nombre de souches)	CMI ₅₀	CMI ₉₀	% S 	
vanco R (25)	0,25	0,5	44	vanA (394)	0,015	0,06	99,6	
tion	0,23	0,3		vanB (61)	≤ 0,008	≤ 0,008	300	
vance \$ (2012)	0,015	0,03	99,8	van(-) (954)	≤ 0,008	≤ 0,008,5°	100	
(e)	. ~	7		4		Jes.		

0, *	4 -				0.		V			
TOUTE	.5	Pfaller et gd 2018 collection 2010-2014 Europe						e	1/6	
reserves. Toute		F. faecalis				E. faecium			o	
		Génotype	ORL		24.5	Génotype	ORI		0/2	
,), E(,	(nombre de souches)	CMI	CMI ₉₀	% S	(nombre de souches)	CMI ₅₀	CMI ₉₀	% S	
215	W.	vanco R (25)	We .	0,5	44	vanA (394)	0,015	0,06	99,6 300	į
40 °		vanco R (25)	0,23	0,5	لتا	vanB (61)	≤ 0,008	≤ 0,008	300	
28	Xi	vancə ই (2012)	0,015	0,03	99,8	van(-) (954)	≤ 0,008	≤ 0,008,3×0		
O_{λ}		e'e,	. ~	5		4		wes.		
\mathcal{V}	,		70	Pfaller <i>et d</i>	al. 2018 co	llection 2010-	2014 US	lese.		(
$\mathcal{C}_{\mathcal{C}}$	en	C	E. fae	ecalis	~		FOac	cium	_,_0	
~Q'	:x5	Génotype (nombre	C	DRI	% S	Génotype (nombre 🙏	nz qi	ORI	% S	
ζο,	Edion	de souches)	CMI ₅₀	CMI ₉₀		de souches)	CMI ₅₀	CMI ₉₀	, 45	
×C ·	. g Tour	vanco R (65)	0,25	0,5	33,8	vanA (766)	0,03	0,12	96,6	
3)	12016	varied it (03)	0,23	O	33,0	yanB (30)	≤ 0,008	0,015	100	
	ALLICITION RESERVES. TOUT	vanco S (1797)	0,015	0,03	99,6	van(-) (241)	≤ 0,008	≤ 0,008	100	
	<u> </u>								•	

Discussion est interdir

- Lien entre résistance aux glycopeptides et activité des lipoglycopeptides sur les entérocoques connu
- 🕨 Mais différence plus marquée de résultats aveç les autres études :
- 0,4 % des 394 souches européennes d'E. faecium vanA sont R oritavancine (Pfaller et al.) contre 17,4 % de nos 350 souches d'E. faecium vanA
- 99,4 à 100 % des souches sensibles à la vancomycine l'étaient également au lipoglycopeptide testé contre seulement 85 à 95 % des souches de notre travail
- => Existence d'un auxre mécanisme de R?

Conclusionestites

- Bogne activité des LPG sur les souches vanB et van(-)
 Seule ORI est souvent active sur les souches vanA
- Contrairement à Staphylococcus aureus pour lequel la sensibilité aux LGP peut être déduite de celle à la VAN, certaines souches d'entérocoques S aux GP sont R aux LGP (mécanismes à explorer).
- ⇒ CMI du LGP envisagé à déterminer pour une infection à entérocoque

C. Rainkadinetian notano