

Arterial Pulsatility and Circulating von Willebrand Factor in Patients on Mechanical Circulatory Support

Flavien Vincent, MD,^{a,b,c,*} Antoine Rauch, MD, PHD,^{b,c,d,*} Valentin Loobuyck, MD,^{b,c,e} Emmanuel Robin, MD, PHD,^{b,c,f} Christoph Nix, MSc,^g André Vincentelli, MD, PHD,^{b,c,e} David M. Smadja, PHARMD, PHD,^{h,i} Pascal Leprince, MD, PHD,^j Julien Amour, MD, PHD,^k Gilles Lemesle, MD, PHD,^{a,b,c} Hugues Spillemaeker, MD,^{a,b,c} Nicolas Debry, MD,^a Christian Latremouille, MD, PHD,¹ Piet Jansen, MD, PHD,^m Antoine Capel, PHD,^m Mouhamed Moussa, MD,^{b,c,f} Natacha Rousse, MD,^e Guillaume Schurtz, MD,^a Cédric Delhaye, MD,^a Camille Paris, MD,^d Emmanuelle Jeanpierre, PHARMD,^d Annabelle Dupont, PHARMD, PHD,^{b,c,d} Delphine Corseaux, PHD,^{b,c} Mickaël Rosa, PHD,^{b,c} Yoann Sottejeau, PHD,^{b,c} Svenja Barth, MSc,^g Claudia Mourran, PHD,^g Valérie Gomane, BSc,^d Augustin Coisne, MD,^{a,b,c} Marjorie Richardson, MD,^a Claudine Caron, MD, PHD,^d Cristian Preda, PHD,ⁿ Alexandre Ung, BSc,^{b,c,d} Alain Carpentier, MD,^{1,m} Thomas Hubert, DVM, PHD,^o Cécile Denis, PHD,^p Bart Staels, PHD,^{b,c} Peter J. Lenting, PHD,^p Eric Van Belle, MD, PHD,^{a,b,c,*} Sophie Susen, MD, PHD^{b,c,d,*}

GRCI 2018

Institut national de la santé et de la recherche médicale

2 systems of (left ventricular) mechanical circulatory support

1st generation : intermittent/pulsatile devices

- Intermittent ejection
- Arterial pulsatility preserved
- Big, too complex
- No reliable

2

- 2nd generation: continuous/non pulsatile devices
- Continuous ejection
- Arterial pulsatility decreased
- Smaller, less complicated
- More reliable

Abraham WT, Smith SA. Devices in the management of advanced, chronic heart failure. Nat Rev Cardiol. févr 2013;10(2):98-110

Conformation of VWF is determined by the shear stress forces

Acquired von Willebrand Syndrome : a feature of MCS

	During VAD Use	After HT	p Value
Decreased or absent VW multimers	100%	0%	0.001

Uriel N, et al. JACC 2010

5

High GI bleeding rate But almost 50% of patients remain free of bleeding events

GI

72 patients with CF-LVAD support (HeartMate II) JACC Vol 56, N° 15, 2010 :1207-13 **Event Site** Event n 24 7 6 pericardial effusion, 1 hemothorax Chest Dental, LE wound, postmenopausal 3 Other Epistaxis 1 Total 35

IN VIVO:

- Every CVAD recipients had loss of HMWM of VWF ۲
- Reversible after heart transplantation ۲

Uriel N,, et al. Acquired von Willebrand Syndrome After Continuous-Flow Mechanical Device Support Contributes to a High Prevalence of Bleeding During Long-Term Support and at the Time of Transplantation. Journal of the American College of Cardiology. oct 2010;56(15):1207-13.

Bleeding events associated with non pulsatile MCS

GASTRO-INTESTINAL BLEEDING :

- Most frequent adverse effect
- Non pulsatile : 63 per 100 patient-years
- Pulsatile : 6,8 per 100 patient-years

6 Crow S, et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. The Journal of Thoracic and Cardiovascular Surgery. janv 2009;137(1):208-15.

Interrogation

Pulsatility loss and bleeding risk in MCS recipients

- Low pulsatility index = 4 fold increase in risk of bleeding
- No data on the multimerization of VWF

8 Wever-Pinzon O, et al. Pulsatility and the Risk of Nonsurgical Bleeding in Patients Supported With the Continuous-Flow Left Ventricular Assist Device HeartMate II. Circulation: Heart Failure. 1 mai 2013;6(3):517-26.

Endothelial release of VWF in response to stretch forces

Stretch-induced release of VWF from endothelial cells occurs within minutes

Increase in P-selectin expression

Stretch-Intensity

Rapid dynamic restauration of VWF multimers after TAVR

• TAVR (n=20)

- Significant decrease in mean transvalvular gradient
- Increase in VWFpp

10

Hypothesis

Aim:

To investigate the effect of arterial pulsatility on the intensity of VWF defect under CF-VAD

- Model 1 : in vitro
- Model 2 & 3 : in vivo with an experimental swine model

Methods

CF-MCS : IMPELLA

- Very high shear stress IMPELLA A (CP) & IMPELLA B (5.0) (>33000 rpm)
- Output : IMPELLA A : 3,5L/min vs IMPELLA B : 5,3L/min

• High speed rotating impeller

Methods : experimental models

Biological endpoints :

- VWF antigen (VWF:Ag)
- VWF collagene binding capacity (VWF:CB)
- VWF multimeric structure

Hemodynamic endpoints :

• Carotid Pulse pressure (systolic BP – diastolic BP)

Model 1 : in vitro mock circulatory loop

To demonstrate the pure proteolytic degradation of VWF in absence of pulsatility

- Human whole blood
- Impella running at maximal speed during 30 min
- Two pump with different maximal flow (impella A & Impella B)
- +/- enzymatic inhibitor (EDTA)

Model 1 : in vitro mock circulatory loop

• Both Impella were associated with rapid and complete VWF degradation in 30 min

Results Model 1: in vitro mock circulatory loop

- Both Impella were associated with rapid and complete VWF degradation in 30 min
- Enzymatic degradation (fully prevented by EDTA)

VWF multimeric profile after EDTA spiking with Impella A (left) and Impella B (right)

Swine experimental model

Transcatheter approach via surgical aortic access

- Median laparotomy
- Abdominal aorta puncture
- Insertion via 22 Fr introducer
- Fluoroscopic guidance
- Pulse pressure monitoring via carotid catheter

Experimental setup

Impella inside LV

Results : Model 2 in vivo : Dose effect model of pulsatility on VWF degradation

Results : Model 2 in vivo : Dose effect model of pulsatility on VWF degradation

Results : Model 2 in vivo : Dose effect model of pulsatility on VWF degradation

21

Results : Model 3 in vivo : Cross over study sequential change in pulsatility and shear in a same animal

Results : Model 3 in vivo : Cross over study sequential change in pulsatility and shear in a same animal

Sequential change of pulsatility and shear in a patient with cardiogenic shock requiring MCS

Clinical history

- 58 year old man
- Severe dilated cardiomyopathy, cardiogenic shock

Underwent 3 successively phases of MCS with different hemodynamic and shear pattern

- Phase 1: Peripheral ECMO : high shear and low pulsatility
- Phase 2: CARMAT Total artificial heart : low shear and normal pulsatility
- Phase 3: Peripheral ECMO + CARMAT: high shear and low pulsatility

Clinical report : 3 phases of MCS with different shear/pulsatility

Continuous-flow MCS

 Marked decrease of HMWmultimers

Pulsatile-flow MCS

- Rapid restoration of HMWmultimers
- Rapid increse in VWF Antigen

CF-MCS + PF-MCS

Rapid loss of HMW-multimers

Clinical report : 3 phases of MCS with different shear/pulsatility

Pulsatile phase

- Rapid restoration of HMWmultimers
- Rapid increse in VWF Antigen

Online Figure 3

First animal model with variable pulsatility and constant shear stress forces

Degree of pulsatility is a strong modulator of VWF multimerization

Endothelium response to restoration of pulsatility

- Not only the inhibition of VWF shear-induced proteolysis
- Acute recovery of VWF defect triggered by pulsatility

Clinically relevant : toward a better prevention of acquired VWF defect ?

- VWF defect not only dependent of device's geometry (shear stress)
- Nature of the flow matters !
- Concept of developing new mechanical circulatory devices with optimal balance between pulsatility properties and shear

TRANSLATIONAL RESEARCH TEAM

